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Abstract
We study the behaviour of a particle in an attractive Coulomb potential
according to the nonrelativistic approximation of the Lorentz–Dirac equation,
that is the equation describing the motion of a charged point particle in classical
electrodynamics when radiation reaction is taken into account. We prove that
for any choice of the initial data the particle always eventually escapes to
infinity. Its acceleration either vanishes asymptotically, corresponding to a
scattering process, or increases exponentially fast with time, with a so-called
‘runaway’ behaviour. No bound states of any type are possible.

PACS number: 03.50.De

1. Introduction

Let us consider a point particle of mass m and electric charge −e, moving in the attractive
Coulomb potential generated by a fixed point charge Ze. In classical electrodynamics,
when the effect of radiation reaction is taken into account, the motion of the particle obeys
the Lorentz–Dirac equation [1], which in the situation considered and in three-dimensional
notation can be written as

6πm

e2
ẍ − ...

x − ẋ(ẗ2 − ẍ2) = −3Z

2

x

r3
ṫ ṫ2 − ẋ2 = 1 (1)

where the vector x represents the coordinates of the particle with respect to the fixed centre
of force, r = |x| and dots denote differentiation with respect to proper time s (units are such
that the speed of light is equal to one).

In 1943 Eliezer [2] proved a quite surprising result about the particular solutions of
equation (1) for which the motion takes place on a straight line. He found that, despite the
attractive character of the Coulomb potential, it is impossible for a particle to fall into the
centre of force. An incoming particle always inverts its direction of motion at a finite distance
from the singularity, and then starts moving away in a self-accelerating way, in such a way
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that its velocity asymptotically approaches the speed of light [3]. Such unphysical ‘runaway’
behaviour was already known to occur for solutions of the Lorentz–Dirac equation even in the
absence of an external potential, e.g., for the motion of a free particle or of a particle disturbed
by an electromagnetic pulse [1]. In those cases, for assigned initial values of position and
velocity, physically acceptable solutions with constant final momentum can only be obtained
by a suitable choice of the initial acceleration. However, the fact that runaway flight, instead of
collision, is the only possible outcome of the one-dimensional Coulomb problem whenever the
initial velocity is directed towards the centre of force, appears as a remarkable contradiction
to elementary physical intuition.

More recently, Eliezer’s results have been partially extended to the full three-dimensional
case by Carati [4], who has considered the mathematically simpler equation [5] to which (1)
reduces in the nonrelativistic limit. This equation is

6πm

e2
ẍ − ...

x = −3Z

2

x

r3
(2)

where dots now denote differentiation with respect to the laboratory time t. Carati has proved
that there do not exist solutions of (2) for which the particle falls into the centre of force
(i.e. r → 0) either at a finite or an infinite time. This result, which was already conjectured
by Eliezer for the relativistic case [2], contradicts the well-known heuristic argument [6]
according to which the electron of an hydrogen-like atom should fall into the nucleus in a
short time by spiralling inwards as a result of energy loss by radiation.

However, apart from this negative result, no other information was available up to now
about the possible behaviour of the particle for t → +∞ in the three-dimensional case. In
particular, no definite answer still existed about the possible existence of bounded solutions
[4]. In this paper, dealing again with the nonrelativistic case, we provide an answer to this
question by proving that actually the particle, for any choice of the initial data, eventually
escapes to infinity (i.e. limt→+∞ r = ∞), either with runaway behaviour or with vanishing
asymptotic acceleration.

2. Mathematical results

After the rescaling t → ξ t , with ξ = e2/6πm and x → χx, with χ = (3Z/2)1/3ξ ,
equation (2) becomes

...
x = ẍ +

x

r3
. (3)

The present section is devoted to a mathematical analysis of the properties of the solutions
of the above equation. We recall that equation (3) shares with (1) the feature of admitting
self-accelerating solutions. To see this, just note that when the Coulomb term vanishes, that
is for r → ∞, equation (3) obviously admits solutions of the form ẍ(t) = ẍ0 et . The main
difference, with respect to the relativistic case, is that now the limit of the velocity is infinite
instead of one. We shall be using the notation v = ẋ, a = ẍ, v = |v|, a = |a|. Since
equation (3) is of third order with respect to time, initial data include the values of x, v and
a at a given time t0 . The fact that the particle cannot fall into the singularity in a finite time
implies that for any initial data the solution is univocally defined and well behaved on the
entire time interval [t0, +∞).

We begin by giving some useful lemmas.

Lemma 1. If y ∈ R and f : [t̄ , +∞) → R is a differentiable function such that
f (t̄) < y < lim sups→+∞ f (s), then there exists t > t̄ such that f (t) = y, ḟ (t) � 0.
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Proof. Since f is continuous and lim sups→+∞ f (s) > y, f −1([y, +∞)) is a closed nonempty
subset of [t̄ , +∞), and therefore it has a minimum. Then the thesis is easily obtained with
t = min f −1([y, +∞)). �

Lemma 2. If x : [t̄ , +∞) → R
N is a twice continuously differentiable function such

that
∫ +∞
t̄

a2 dt < +∞ and r < M for every t � t̄ , where M is a positive constant, then
limt→+∞ v = 0.

Proof. Let us suppose that lim supt→+∞ v > 0 and take v̄ such that 0 < v̄ < lim supt→+∞ v.
For any arbitrarily large T, owing to the fact that

∫ +∞
t̄

a2 dt < +∞, one can take t0 such that∫ +∞
t0

a2 dt < v̄2/4T . Then, from Schwarz’s inequality it follows that for t > t0

∫ t+T

t

a dt ′ �
(∫ t+T

t

a2 dt ′
)1/2 (∫ t+T

t

dt ′
)1/2

<

√
v̄2

4T

√
T = v̄

2
.

If we now take t1 > t0 such that v(t1) > v̄, then for all t ∈ [t1, t1 + T ] we have
|v(t) − v(t1)| �

∫ t

t1
a dt ′ < v̄/2. Introducing the unit vector n = v(t1)/v(t1), we have

then v(t1) − n · v(t) = n · [v(t1) − v(t)] < v̄/2, whence n · v(t) > v(t1) − v̄/2 > v̄/2. It
follows that

|x(t1 + T ) − x(t1)| � n · [x(t1 + T ) − x(t1)] =
∫ t1+T

t1

n · v(t) dt >
v̄T

2

which implies that the trajectory is unbounded, owing to the arbitrariness of T. One
can conclude that if the trajectory is bounded then lim supt→+∞ v = 0, or equivalently
limt→+∞ v = 0. �

Lemma 3. If f : [t1, t2] → R is a continuously differentiable function such that ḟ − f � A

for every t ∈ [t1, t2], where A is a positive constant, then
∫ t2
t1

f 2 dt � A2[T − 2 tanh(T /2)],
with T = t2 − t1.

Proof. Introducing the function h = ḟ −f = et d/dt (e−t f ) � A, we have for t1 � t � s � t2

e−sf (s) − e−t f (t) =
∫ s

t

e−uh(u) du � A(e−t − e−s)

whence it follows that

f (s) � A(es−t − 1) � 0 for s � t, f (t) � 0 (4a)

f (s) � A(es−t − 1) � 0 for s � t, f (t) � 0. (4b)

Let us now take t in the following way:

(i) t = t1 if f (t1) � 0;
(ii) t = t2 if f (t1) < 0, f (t2) � 0;

(iii) t ∈ (t1, t2) such that f (t) = 0 if f (t1) < 0, f (t2) > 0.

By applying (4a) and (4b) it is then easy to see that

[f (s)]2 � A2(es−t − 1)2 for all s ∈ [t1, t2].

It follows that
∫ t2
t1

f 2 ds � A2g(t), where

g(t) =
∫ t2

t1

(es−t − 1)2 ds = t2 − t1 − 2 e−t (et2 − et1) + e−2t e2t2 − e2t1

2
.
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We can then write in all cases∫ t2

t1

f 2 ds � A2 min
t∈[t1,t2]

g(t).

By equating to 0 the derivative of g one finds that the minimum is reached at t̃ = ln[(et1 +et2)/2],
so that

A−2
∫ t2

t1

f 2 ds � g(t̃) = t2 − t1 − 2 tanh
t2 − t1

2
� t2 − t1 − 2.

�

Following [4], we derive now from equation (3) a set of useful relations. We first recall
that (3) can be rewritten in the form

ȧ − a = et d

dt
[e−ta(t)] = x

r3

which can be integrated to give

a(t) = et−t0

(
a(t0) +

∫ t

t0

et0−s x(s)

r3(s)
ds

)
. (5)

Introducing the function

E = v2

2
− 1

r
− a · v (6)

from (3) one has dE/dt = −a2, or equivalently

E(t) = E(t̄) −
∫ t

t̄

a2 ds. (7)

The function E can be considered as a generalized particle energy which decreases with time
as a result of radiation. Putting F = a · x − E, from (3) it also follows that

d

dt
(a · x) = ȧ · x + a · v = F +

v2

2
(8)

dF

dt
= F +

v2

2
+ a2. (9)

From (9) we obtain for t > t0

F(t) = et−t0F(t0) +
∫ t

t0

ds et−s

(
v2

2
+ a2

)
� et−t0F(t0)

so that using (8)

a(t) · x(t) � a(t0) · x(t0) +
∫ t

t0

F(s) ds

� a(t0) · x(t0) + F(t0)(e
t−t0 − 1) = E(t0) + et−t0F(t0). (10)

We also have

da2

dt
= 2a · ȧ = 2a2 + 2

a · x

r3

whence

a2(t) = e2(t−t0)

(
a2(t0) + 2

∫ t

t0

ds e2(t0−s) a · x

r3

)
. (11)
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Since a2 � 0, the above equation implies

a2(t0) � −2
∫ t

t0

ds e2(t0−s) a · x

r3
. (12)

Definition 1. A solution x : [t̄ , +∞) → R
3 of equation (3) is said to be ‘runaway’ if r → ∞

and the acceleration a diverges exponentially for t → +∞.

Proposition 1. Let x : [t̄ , +∞) → R
3 be a solution of equation (3). If there is a time t0 for

which ṙ(t0) � 0 and v(t0) · a(t0) > 0, then the solution is runaway.

Proof. Let us introduce the unit vector n = v(t0)/v(t0). Taking the scalar product with n of
both members of equation (5) we get

a(t) · n = et−t0a(t0) · n +
∫ t

t0

et−s x(s) · n

r3(s)
ds. (13)

We have by hypothesis a(t0) · n > 0 and x(t0) · n = ṙ(t0)r(t0)/v(t0) � 0. One can see
from equation (13) that if the integrand on the rhs is � 0 for all s � t0, then a(t) · n, and
therefore also x(t) · n, diverge exponentially for t → +∞. This in turn implies that both a(t)

and r(t) are also exponentially divergent. Therefore, the solution is certainly runaway, unless
there exists some t1 > t0 for which x(t1) · n < 0. We are now going to show that this cannot
occur. In fact, since v(t0) · n = v(t0) > 0, there should be in that case a t2, with t0 < t2 < t1,
such that v(t2) · n = 0 and v(t) · n > 0 for every t ∈ [t0, t2). This implies x(t) · n � 0 and
therefore, using again (13), a(t) · n > 0 for every t ∈ [t0, t2]. From this, however, it follows:

v(t2) · n = v(t0) · n +
∫ t2

t0

a(t) · n dt > 0

in contradiction with v(t2) · n = 0. �

We are now ready to prove our main theorem.

Theorem 1. If x : [t̄ , +∞) → R
3 is a solution of equation (3), then limt→+∞ r(t) = +∞.

Moreover, if the solution is nonrunaway, then
∫ +∞
t̄

a2 dt < +∞ and limt→+∞ a(t) = 0.

Proof. We shall distinguish between two possibilities.

Case 1.
∫ +∞
t̄

a2 dt < +∞, so that limt→+∞ E(t) = Ē > −∞. We shall see that in this case
the particle is scattered away with vanishing asymptotic acceleration.

Let us first make the hypothesis that the trajectory is bounded, i.e. there exists M such
that r(t) < M for every t. According to lemma 2 , we have then limt→+∞ v = 0. Furthermore
we have lim supt→∞ r > 0. In fact, if limt→∞ r = 0, from (6) it would follow that
limt→∞ a · v = −∞, and therefore limt→∞ a = ∞, in contradiction with

∫ +∞
t̄

a2 dt < +∞.
Let us now fix r̄ such that 0 < r̄ < lim supt→∞ r . For any arbitrarily large T there exists t0
such that r(t0) > r̄ and supt�t0

v < r̄/2T . Introducing the unit vector n = x(t0)/r(t0), we
then have for t0 � t � t0 + T

r̄ − n · x(t) < n · [x(t0) − x(t)] � |x(t0) − x(t)| �
∫ t

t0

v(s) ds <
r̄

2

whence n · x(t) > r̄/2. From (3) it then follows

n · [ȧ(t) − a(t)] = n · x(t)

r3(t)
>

r̄

2M3
.
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We can now apply lemma 3 to the function f (t) ≡ n · a(t), obtaining∫ t0+T

t0

a2 dt �
∫ t0+T

t0

f 2 dt �
(

r̄

2M3

)2

(T − 2).

We have thus arrived at a contradiction, since owing to the arbitrariness of T the above
inequality would imply

∫ +∞
t̄

a2 dt = +∞. We can so deduce that the trajectory is unbounded,
i.e. lim supt→+∞ r = +∞.

The thesis of the theorem is not yet proved, since in principle it is still possible that
lim inft→+∞ r < +∞. We shall show, however, with a suitable modification of the above
argument, that this assumption also leads to a contradiction. Let us take L > lim inft→+∞ r .
Then for any ε > 0 there is t0 such that E(t0) − Ē = ∫ +∞

t0
a2 dt < ε and r(t0) < L. Since

the trajectory has been proved to be unbounded, by lemma 1 there must also be t1 > t0 such
that r(t1) = L, ṙ(t1) � 0. We then have v(t1) · a(t1) � 0 , since otherwise according to
proposition 1 the trajectory would be runaway. It follows from (6) that

1

2
v2(t1) � 1

r(t1)
+ Ē +

∫ +∞

t1

a2 dt <
1

L
+ Ē + ε. (14)

Since ε and 1/L can be taken arbitrarily small, the above equation implies in particular that
Ē � 0. Let us now fix T > 0. For every t ∈ [t1, t1 + T ] we have

|v(t) − v(t1)| �
∫ t

t1

a dt ′ �
(∫ t

t1

a2 dt ′
)1/2 (∫ t

t1

dt ′
)1/2

<
√

εT .

Hence, introducing the vector

y(t) = x(t) − x(t1) − (t − t1) v(t1) =
∫ t

t1

[v(s) − v(t1)] ds

we have

|y(t)| �
∫ t

t1

|v(s) − v(t1)|ds < ε1/2T 3/2. (15)

Using the triangular inequality we derive from (14) and (15)

r(t) = |x(t1) + (t − t1)v(t1) + y(t)| < L + T

√
2(1/L + Ē + ε) + ε1/2T 3/2 ≡ r̄(ε).

Furthermore, introducing the unit vector n = x(t1)/L, we have v(t1) · n = ṙ(t1) � 0 and
therefore, using again (15),

x(t) · n = [x(t1) + (t − t1)v(t1) + y(t)] · n > L − ε1/2T 3/2.

We have then for t ∈ [t1, t1 + T ]

n · [ȧ(t) − a(t)] = n · x(t)

r3(t)
>

L − ε1/2T 3/2

[r̄(ε)]3
≡ B(ε).

Since L and T can be fixed independently of ε, and

lim
ε→0

B(ε) = L

[L + T
√

2(1/L + Ē)]3
≡ B̄ > 0

for sufficiently small ε we have B(ε) > B̄/2 > 0. Therefore, applying lemma 3 to the function
f (t) ≡ n · a(t), we get∫ t1+T

t1

a2 dt �
∫ t1+T

t1

f 2 dt � B̄2

4
[T − 2 tanh(T /2)]
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which for ε smaller than the rhs is in contradiction with
∫ +∞
t0

a2 dt < ε. We can thus conclude
that lim inft→+∞ r = limt→+∞ r = +∞.

From this result it follows in particular that the integral on the rhs of (5) has a finite limit
for t → ∞. Since in the case considered a cannot diverge exponentially, equation (5) implies

a(t0) = −
∫ +∞

t0

et0−s x(s)

r3(s)
ds

for all t0, and so limt→+∞ a(t) = 0.

Case 2.
∫ +∞
t̄

a2 ds = +∞, so that limt→+∞ E(t) = −∞. We shall prove that this situation
always corresponds to a runaway solution.

Let us first suppose that a solution is unbounded. Then, having taken t0 such that
E(t0) < 0, by lemma 1 there must be t > t0 such that r(t) > −1/E(t0) and ṙ(t) � 0. But
then, using (6) and the fact that E is a nonincreasing function, one obtains

v(t) · a(t) � v2(t)

2
− 1

r(t)
− E(t0) > 0.

Therefore, the solution turns out to be runaway upon application of proposition 1.
We further observe that, according to (10), if F(t0) > 0 for some t0, then a · x diverges

exponentially to +∞ for t → +∞, and the identity r̈r = a · x + v2 − ṙ2 � a · x implies that
the same is true for the function r̈r . One has then ṙr = ∫ t

(r̈r + ṙ2) dt ′ → +∞ for t → +∞,
and so r2 = 2

∫ t
ṙr dt ′ → +∞. This implies that the solution is unbounded and so, as we

have just seen, runaway.
On the grounds of these results, from now on we shall only consider (hypothetical)

bounded solutions for which F(t) � 0 for every t. We then obtain from (12) for t ′ > t

a2(t) � 2
∫ t ′

t

ds e2(t−s) W(s)

r3(s)
(16)

where W ≡ −E. Introducing also the nonincreasing function M(t) = sups�t r(s), we obtain
from (16) taking the limit for t ′ → +∞

dW(t)

dt
= a2 >

2W(t)

M3(t)

∫ +∞

t

ds e2(t−s) = W(t)

M3(t)
. (17)

For W(t) > 0 and s > t we then have

W(s) > W(t) exp

[∫ s

t

du

M3(u)

]
� W(t) exp

s − t

M3(t)
(18)

which when substituted into (16) provides

a2(t) � 2W(t)

M3(t)

∫ +∞

t

ds exp[(t − s)(2 − M−3(t))]. (19)

From equations (18) and (17) one can see that both W and a2 diverge exponentially for
t → +∞. Furthermore, since inequality (19) implies that the integral at the rhs be convergent,
we have 2 − M−3(t) > 0, and so limt→+∞ M(t) = lim supt→+∞ r(t) � 1/21/3. Now take any
t large enough so that, say, E(t) < −3. If r(t) < 1/21/3, then by lemma 1 there must be t ′ > t

such that r(t ′) > 1/31/3 and ṙ(t ′) � 0. Therefore

v(t ′) · a(t ′) >
v2(t ′)

2
− 1

r(t ′)
− E(t) >

v2(t ′)
2

− 31/3 + 3 > 0

and again one can make use of proposition 1 to deduce that the solution is runaway. It follows
that, in order for a solution to be nonrunaway, there must exist t0 such that r(t) � 1/21/3 for
every t � t0.
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Let us then suppose that such a t0 exists. Since we have proved that limt→+∞ a = +∞,
there must be t1 > t0 such that a(t1) > 1 + 22/3. Introducing the unit vector n = a(t1)/a(t1),
for t � t0 we have |n · x(t)|/r3(t) � 1/r2(t) � 22/3. Therefore for t � t1, using (5) we get

a(t) · n � et−t1a(t1) · n − 22/3(et−t1 − 1) > et−t1 + 22/3

so that limt→+∞ n · x(t) = +∞ and the solution is runaway also in this case. This completes
the proof of the theorem. �

3. Comments

Since runaway solutions are considered to be unphysical, from the above theorem it follows
that all acceptable solutions of equation (3) are of scattering type. It is not known in general
whether, given a pair of initial values of position and velocity, there exist some initial values of
the acceleration for which the corresponding solution is nonrunaway. It is, however, possible
to establish a simple condition that a physically acceptable set of initial data is bound to satisfy.
In fact for a nonrunaway solution, since we have proved that limt→+∞ a(t) = 0, recalling (6)
we have

Ē = lim
t→+∞ E(t) = lim

t→+∞ v · (v/2 − a) = lim
t→+∞ v2/2 � 0.

But since E is a nonincreasing function of time, this necessarily implies that at all times one
has E � 0. One can then immediately observe that in general, for a given r, the acceleration
a has to diverge for vanishing v. In particular, no nonrunaway solutions can exist for which
at a given time one has v = 0, independently of the distance from the centre of force. Note,
however, that the usual sum of kinetic and potential energy Ec = v2/2−1/r might temporarily
assume negative values, provided the acceleration simultaneously acquires a sufficiently large
component antiparallel to the velocity. Of course, this can be possible because Ec is not
conserved for a particle obeying equation (3). Other interesting phenomena related to the
same fact have already been revealed in the numerical study of the one-dimensional Lorentz–
Dirac equation in the presence of a potential barrier. They include the classical analogues of
well-known quantum phenomena such as weak reflection and tunnel effect [7, 8].

Let us now consider for instance an initial condition which, in the absence of radiation
reaction, would correspond to a circular orbit, so that v2 = 1/r . If we denote with aT

the tangential component of the acceleration (with verse opposite to the velocity), and with
aC = 1/r2 the centripetal acceleration that would correspond to the Coulomb force alone,
it is easy to see that the condition E � 0 implies aT /aC � 1/2v3, which in the customary
units used in equation (2) becomes aT /aC � 3Z/4v3. One can see therefore that, at least in
the nonrelativistic case v � 1, the tangential acceleration due to radiation reaction has to be
largely predominant in order that nonrunaway solutions may possibly exist.

It would be, of course, extremely interesting to extend the conclusions of theorem 1 to
the relativistic Lorentz–Dirac equation and to the case of two (or more) massive interacting
particles, instead of a fixed centre of force. It has in fact been proved that in such a case, when
the independent degrees of freedom of the electromagnetic field are duly taken into account,
the dynamics of particles and field can be treated as an infinite-dimensional conservative
Hamiltonian system [9]. If results similar to theorem 1 were found to hold, since scattering
solutions clearly have positive total energy (when in the definition of energy one subtracts the
rest-mass of the particles involved), this would seem to indicate that there do not exist negative
energy states in the physical (i.e. nonrunaway) phase-space of the associated Hamiltonian.
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